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Summary. A central problem in the analysis of genetic 
field trials is the dichotomy of "genetic" and "environ- 
mental" effects because one cannot be defined without the 
other. Results from 768,000 simulated family trials in 
complete randomized block designs demonstrated a seri- 
ous upward bias in estimates of family variance compo- 
nents from multi-unit plot designs when the phenotypic 
observations were compatible with a first-order autore- 
gressive (AR1) process. The inflation of family variances 
and, thus, additive genetic variance and narrow sense 
individual heritabilities progressed exponentially with an 
increase in the nearest neighbor correlation (~o) in the AR1 
process. Significant differences in inflation rates persisted 
amo'ng various plot configurations. At Q = 0.2 the infla- 
tion of family variances reached 48-73%. Inflation rates 
were independent of the level of heritability. Modified 
Papadakis nearest-neighbor (NN) adjustment procedures 
were tested for their ability to remove the bias in family 
variances. A NN-adjustment based on Mead's coefficient 
of inter-plant interaction and one derived from Bartlett's 
simultaneous autoregressive scheme removed up to 97% 
of the bias introduced by the phenotypic correlations. 
NN-adjusted estimates had slightly (5-8%) higher rela- 
tive errors than did unadjusted estimates. 

Key words: Genetic variance - Experimental design - 
Simulation - Spatial process - Nearest neighbor adjust- 
ment 

Introduction 

Nearest-neighbors (NN) in field trials share a common 
microsite that tends to make observations from non- 
competing neighbors more alike than trial observations 

selected at random (Cliff and Ord 1981; Upton and Fin- 
gleton 1985). This lack of independence among neighbor- 
ing experimental units is known to cause bias in estimated 
treatment effects and in the standard error of treatment 
contrasts (Binns 1987; Kempton and Howes 1981; Mag- 
nussen 1990; Wilkinson et al. 1983); it also inflates the 
among-plot variance (Magnussen 1989a; Smitth 1938; 
Snedecor and Cochran 1971). Today the analyst of field 
trials enjoys a plethora of spatial methods and[ NN-ad- 
justment techniques that may improve both the precision 
and the accuracy of field experiments (for example, Cor- 
rell and Anderson 1983; Cullis and Gleeson 1989; Ord 
1975; Stein and Corsten 1991; Zimmerman and Harville 
1991). Despite this progress and the suspicion that con- 
ventional analyses of spatially correlated observations in 
genetics trials may be disastrous (Stroup and Mulitze 
1991) little has been undertaken to quantify, in a system- 
atic way, the effect of NN-correlated observations on 
estimates of genetic variances. 

A major obstacle to progress in this area is rooted in 
the confounding of genetic and environmental effects in 
any given trial (Gregorius and Namkoong 1987). An 
estimated "genetic effect" is conditional on a reference 
population and a reference environment and vice versa 
(Monserud and Rehfeldt 1990). Faced with a positive 
correlation among first-order neighbours in a field trial 
the question of how to decompose the phenotypic obser- 
vation into orthogonal and unbiased "genetic" and 
"environmental" effects becomes intricate. The study pre- 
sented here seeks to establish, through simulations, the 
impact of a phenotypic first-order autoregressive (ARI) 
process on estimates of family variance components in 
complete randomized block designs. Empirical correla- 
tion patterns appear to be compatible with this type of 
process (Besag and Kempton 1986; Binns 1987; Mag- 
nussen 1990). Designs included in the simulations are 
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those most  c o m m o n l y  encoun te red  in  forest genetics 
trials where the p rob lem of spatial  dependencies  is espe- 
cially bo thersome due to the large n u m b e r  of entries, 
pa tchy  microsi te  mosaics,  an d  the long  d u r a t i o n  of test- 
ing that  allows the emergence of manifes t  spatial  inter-  
re la t ionships  (Correll  an d  Cellier 1987; L ibby  and  
Cocke rham 1980; Stern 1965). A choice of feasible (not 

necessari ly optimal)  N N - a d j u s t m e n t  procedures  will be 
in t roduced  and  assessed on  their abi l i ty  to remove bias in  
family var iance  componen t s  arising from corre la t ions  of 
pheno typ ic  values. 

Methods 

Simulated family trials in complete randomized block designs 
with a priori known family effects and AR1 ~ correlated pheno- 
typic values were analyzed using conventional ANOVA proce- 
dures in order to assess the effects of the environmental spatial 
correlation on the estimated family variance component. Sub- 
sequently, nearest neighbor (NN) adjustments procedures 
demonstrated their potential for removing bias in family vari- 
ance components introduced by the ARl-driven phenotypic cor- 
relations. 

Each simulation began with the layout of a field of rows and 
columns consistent with a given experimental design. The field of 
experimental units was then divided into n~op contiguous blocks, 
each containing one plot of size L • W for each of the nf, m 
families and families assigned randomly to plots (')ia random 
permutations). In a single simulation all experimental units be- 
longing to a certain family (i) had the same family value h 
assigned to it by a random draw from a Gaussian population 
with mean zero and variance af2am . Phenotypic values (U) associ- 
ated with the experimental unit in location (x, y) came from the 
following generating algorithm: 

U~,y=O • U~-l ,y+O x Ux, y _ ~ - O 2 x  U ~ - l , y - l + Z ~ , y + T i  (1) 

where ff denotes the spatial autocorrelation [ 0 [ < 1 (row correla- 
tion is equal to column correlation), and Z~, y is an iid Gaussian 
residual environmental effect with mean zero and a variance of 
~z (1 -Qz)z, where ~2 is the total environmental variance (er a = 1); 
z i is the a priori known effect of family i assigned (randomly) to 
the location (x, y). For a process generated this way, the covari- 
ance between two non-related experimental units r rows and s 
columns apart is 0 (~+~), as expected for an AR1 process (Brock- 
well and Davis 1987). To initiate this generating algorithm a 
single surround row (x = 0) and column (y = 0) of uncorrelated 
random Gaussian numbers with mean zero and a variance of 1.0 
was created first before the experimental field was simulated. 
Note that the algorithm in Eq. (i) generates both "genetic" and 
"environmental" correlations as part of ff and that the "genetic" 
component of the correlation will be design dependent. Intu- 
itively, this may seem implausible in the light of the classical 
"Phenotype = Genotype + Environment" equation applied in 
the conventional analytical framework (Falconer 1981). How- 
ever, this orthogonal decomposition requires a strict indepen- 
dence between the factors which, of course, is lacking in real life 
situations. The generation algorithm is merely a tool to create a 
field where adjacent phenotypes are more similar than pheno- 
types picked at random and where, by definition, the genetic 
values are confounded with the environmental values (i.e., a 
single observation includes a genotype x environment interac- 

First-order autoregressive process 

i0 =0.5, nfom=50, nrep=5, plot= 5 ~  

[ 

,, fam:l*l o farn#2 v fam#:3 

Fig. 1. An example of a simulated field trial with different signa- 
tures for high, medium and low phenotypic values. The locations 
of three families have been highlighted 

tion effect). An example of a simulated field trial is provided in 
Fig. 1. The suggested model is, according to extensive analyses 
of field data (Falconer 1981), not only realistic but also closely 
models the real world. 

A standard ANOVA of the simulated observations U~, r was 
performed on all simulated trials according to the model: 

ux, ,  = u,~k = ~ + ~, + /? j  + ~,j + ~,~k, (2) 

where U~j k is the phenotypic observation made on the experi- 
mental unit k in block j belonging to family i, # is the overall 
mean of all experimental units (E (#) = 0), % is the family effect of 
family i (E(r)=0, E(z2)=a~), flj is the random effect associated 
with block j (El/?)=0, E(/?2)=arz~p), n,j is the effect of the plot 
associated with family i in block j (E(~zi): 0, E (~z 2) = a~lot) and 
e~j k is the residual (error term) associated with the observation 
U/j k (E l0=0 ,  E(e2)=crZ,). Variance components for families, 
replications, plots and within-plots were estimated by equating 
ANOVA mean-squares (MS) to their expectations (EMS). 
Table 1 outlines the form of the ANOVA. F-ratios to test the null 
hypotheses of • 2 a m : 0  w e r e  computed as Ff, m = MSfam/MSp, 
and the probability P(F > Ff,,,) was obtained from standard 
tables of the F distribution. 

Assuming that the families tested consist of half-sibs the 
narrow sense individual heritability in retrospect was computed 
as (additive genetic variance = 4 x crfz, m): 

~/2 __ 4 X 0"2am 

4 x ff2am -1- ^2 ^2 (3) O-plot -[- erw 

and compared to the known true value ("hats" are used for 
estimates of theoretical values). The heritability calculations reflect 
the fact that all the within-plot variance is assumed to be non- 
genetic. Family mean repeatability was computed as: 

~12m = tT~am (4) 
~f2am _]_ ^2 ^2 O',lo,/nrov + erw/(nsi~o • nro~) 

Plot sizes in the experimental designs included the common 
1• 2•  3•  5•  and 10• configurations, while the 
number of replications were 8, 20, 32 and 44 for the single unit 
(1 • 1) plot design and 2, 3, 4 and 5 in the multi-unit plot designs. 
The number of families in the trials came to 30, 50, 70 and 90. 



Table 1. Form of ANOVA for the model in Eq. (2). 9~ = intra-plot correlation coefficient 
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Source of variation df MS EMS 

Replications (nre p - -  1) MS~ 
Families (nfa m - 1) MSf 
Families x replications (plot) (nfa  m - -  1) X (/'/reIo -- 1) M a p  

Within-plots (n~i~ - 1) x n~p x nf~ m MS w 

2 2 2 
O" w -~- F/size O'plot @ nsize n fam O're p 

2 _~_ F/size 2 2 Gw Gplot -}- nsize ~/rep O'fam 

~ = ~ 2 ( 1  + (n.~zo - 1) t)w) G w -]- Hsize O'plot 
0"2 = f f 2 ( l  - -  ~Ow) 

Family values (z) that would generate a heritability of 0.15 in a 
trial of half-sibs (i.e., ~ = 0.044) were generated for all experi- 
mental designs (deemed realistic for trials with forest trees (Zobel 
and Talbert 1984)). Additional levels of heritability (0.25, 0.35 
and 0.55) were included in the analysis of the commonly used 
5 x 1 plot design. Each of the above 128 design combinations 
[4 (replications). 4 (families). (5 (plot sizes). 1 (heritability levels) 
+ 1 (plot size). 3 (heritability levels)) = 128] was simulated 1,000 
times for each of six levels oft) (t)=0.0, 0.1, .. . ,  0.5) for a total of 
768,000 simulations. 

ANOVA residuals (e) estimated via the model in Eq. (2) can 
be used to obtain approximate (posterior) estimates of the micro- 
site effect for the experimental unit at location (x, y). A weighted 
sum of the residuals estimated for the eight nearest neighbors 
(NN) to location (x, y) is frequently used to obtain this estimate 
of microsite effects (Binns 1987; Correll and Anderson 1983; 
Kempton and Howes 1981; Loo-Dinkins et al. 1990; Magnussen 
1990; Wilkinson et al. 1983). Differences among applied proce- 
dures rest with the choice of weights given to the NN-residuals. 
By subtracting this weighted NN-residual sum from the original 
observations (U~jk) a microsite-adjusted observation is estimated 
that can undergo a repeated ANOVA according to model (2). It 
is hypothesized that this NN-adjustment will effectively correct 
for the bias in effect estimates due to the spatial correlation 
process. Let ~NN(i,j, k) denote the weighted sum of the nearest 
neighbor residuals estimated for an observation U~jk, and let 
U0glN N denote the NN-adjustment observation; we then have: 

(5) 
U i j k I N N  : U i j k  - -  eNN(i,j,k)=# + Zi + flj + Xij + ~ijk - -  eNN(i,J, k). 

Seven different weight factors (b) were tried in the calcula- 
tions of the weighted sum of NN-residuals. Essentially, b is the 
slope of the regression between the residual of an experimental 
unit and those of its neighbors. All experimental units were 
assigned eight nearest neighbors. Missing neighbors along 
outside edges were replaced by their interior complement. The 
first chose (B1) had b=QN/8 where ~N is the average corre- 
lation of residuals (determined from the first ANOVA pass) 
among eight NN experimental units. The second choice (B2) had 
b = t)ols/8 where Ool~ is the average first-order correlation of resid- 
uals as estimated from the ANOVA residuals (an ordinary least- 
squares estimate of t)). The third choice (B3) was based on an 
iterated adjustment procedure starting with b = 0o~J8. It is clear 
from Eq. (5) that the NN-adjusted phenotypic values (Uijkl NN) 
are, in effect, obtained from a change in the residuals, Equa- 
tion (5) describes a simultaneous autoregressive scheme of the 
residuals. The microsite-adjusted observations obtained via the 
first ANOVA pass are therefore only approximate. An iterative 
process of estimation and adjustment of the true but unknown 
residuals would give the desired final adjustment (Besag 1974). 
With an initial choice of b < 1 the final iterated weight (slope) 
becomes b / ( l - b )  as shown by Magnussen and Yeatman (1988). 
With b=Qo~J8 the final weight in the third option (B3) for b 
equalled ~oU(8 " (1 -Qol~)- The fourth choice (B4) of b was similar 
to B3 only with ~o~ replaced by t), the true spatial AR1 correla- 

tion. In practice only Qo~s will be available, but as shall be shown 
later this estimate of the spatial correlation is always biased 
towards randomness (Cochrane and Orcutt 1949). The fifth 
value of b (B5) was derived from a transformation of the AR1 
process of environmental values (Ux, r) to a simultaneous regres- 
sion scheme of the form: 

~ x . ,  = U~x.,kNN + '~ x Z U~x, ,,~, (6) 
(x', y ' )~NN (x, y) 

where NN(x, y) denotes the four immediate row and column 
neighbors (the four diagonal neighbors have been omitted) to the 
unit at location (x, y). Lambda (2) in Eq. (6) is also called Mead's 
coefficient of inter-plant interaction (Mead 1967). Magnussen 
gives an algorithm to estimate 2 from the intra-plot correlation 
Qw (Magnussen 1989 a, eq. (11) on p. 373. See Table 1 for estima- 
tion procedures of ~w). With 2 obtained this way, the fifth choice 
(B5) for b became b = 0.52 + 0.522; the last term was added to 
account for the four diagonal neighbors. The sixth choice (B6) 
for b was also based on a transformation of the ARI process to 
a simultaneous regression scheme, only this time Bartlett's trans- 
formation rule b = 2Q/(8-(1 +~o2)) was used instead (Bartlett 
1978). The final choice of b (B7) consisted of b=  1/8, in other 
words the NN-adjustment is based on the simple average of the 
eight nearest neighbor residuals. This method is known as either 
Papadakis method (see Papadakis (1984) for reference to the 
original method from 1937) or the moving average method (for 
example Wright 1978). 

A positive spatial AR1 autocorretation (Q) creates a positive 
intra-plot correlation (t)w) in the multi-unit plot designs, which 
leads to the relationships between the among- and within-plot 
variances outlined in Table 1 (see also Magnussen 1989a; 
Snedecor and Cochran 1971). The theoretical relationship be- 
tween ~o w and ~ takes the following form for the investigated 
multi-unit plots: 

2 x 2 plots: ~w = (2 x Q + 02)/3, (7) 

3 x 3 p l o t s :  ~ w = ( 2 4 x t ) + 2 8 x ~ 2 + 1 6 x ~ 3 + 4 x Q 4 ) / 7 2 ,  (8) 

n x I plots: ~Ow = ('~ ~V =~ (n-i) xe~)/("~x(n-i)).V `~ (9) 

Observed intra-plot correlations (~w) were, on the average, 1% 
below the theoretical values derived from the nominal values of 
9 and Eqs. (7)-(9) (corr(E(t)w), ~w) = 0.998). 

Simulated phenotypic correlations among first-order neigh- 
bor values (Ux, r ) within the same row or column were, on an 
average, across all designs (i.e., 768,000 simulated trJials) 2 - 5 %  
below their nominal value of ~o. This discrepancy was attributed 
to the lack of a correction for finite population sizes in the 
calculations of variances and covariances, the downward bias 
towards randomness in a posteriori least-squares estimates of 
autocorrelations (Cochrane and Orcutt 1949) and the complex 
pattern of "genetic" carry-over effects from one location to the 
next. Relationships between some of the various spatial mea- 
sures of NN-correlations in the designs with a 5 x I plot design 
have been listed in Table 2. 
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Table 2. Estimates of spatial relationships in the 5 x 1 plot design 

0 0ols a ~) b ON c ,~ d 

0.1 0.06 0.04 0.08 0.04 
0.2 0.15 0.10 0.13 0.08 
0.3 0.25 0.16 0.20 0,12 
0.4 0.34 0.25 0.27 0.16 
0.5 0.44 0.35 0.36 0.19 

First-order autocorrelation determined from ANOVA residuals 
b Average correlation among first-order neighbors (estimated 
directly from the simulated values) 

Average correlation among the eight NN neighbors of a single 
unit 
d Mead's coefficient of inter-plant interaction 

Table 3. Estimated regression coefficients and fit statistics for the 
model 0"2am = S O " exp(a �9 Q + b �9 nro p + e. nfam). Standard errors 
of estimates are indicated in parentheses 

Design h z a S o " 102 a b " 103 C " 104 RSE b R 2 e 

�9 103 

2x2  1.71 8.1 5.5 
0.02) (2.~ (1.1) 

3 x 3  2.77 1.5 4.1 
4.2 (0.01) (1.5) (0.8) 

0.15 (0.03) 
5 x l  1.88 -4.9 4.6 

(0.02) (2.~ (1.1) 

10xt  2.33 -7.9 2.6 
(0.02) (1.8) (1.0) 

2.1 0.996 

0.15 4.2 
(O.O4) 

0.25 7.9 
5 x 1 (0.01) 1.88 -0.8 4.2 

(0.01) (1.6) (0.8) 
0.35 12.8 

(0.02) 

0.55 28.9 
(0.05) 

5.0 0.995 

a Narrow sense individual heritability (known) 
b Root mean square error of regression 
~ Fraction of the total variance explained by the fitted model 

Results 

Estimates of family variance components and thus esti- 
mates of additive genetic variance were upward biased in 
multi-unit plot designs with a positive spatial autocorre- 
lation among neighboring units. The average bias in ex- 
periments with a true heritability of 0.15 (true crf 2 = 0.044) 
is displayed in Fig. 2. An exponential rise in the bias with 
an increasing spatial autocorrelation (Q) is evident. Each 
of the curves in Fig. 2 represents an average of 16,000 
simulations with various levels of replications and num- 
ber of families (see the Methods section for details). 
Square 3 x 3 row plots and 10 x I row plots produced the 

O~2m plot size 

0.16- / 3  ~3 

0.14' " f l 0 , ` 1  

0.12- / j I " ~ / 5 , ` i  
J f ~_~2  ,`2 O.lO- 7 . ~ ' "  

0.08" ~ J ~  . ~ . ~ -  

0.06- ~ ~'---- ' -  
. _,m-.-.-.-.-.-.-.~. _ a_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 ,,1 

0.04- 

o.'i 0.'2 o.~ o.~ o.~ 
Autocorrelation (p) 

Fig. 2. Trends in family variances at various levels of autocorre- 
lation. True af 2 = 0.044 

largest bias for 0 > 0, while the 2 x 2 and the 5 x I plot 

designs displayed a lower inflation rate. Designs with 
single-unit plot designs were, on the average, free from 
any systematic bias in the estimated family variance com- 
ponent. A ranking of the bias visualized in Fig. 2 would 
closely follow the ranking of the inflation factor for plots 
(=  nsize/(1--0w); see also Table 1 for details). 

A model-based quantification of the bias in family 
variance components due to spatial autocorrelation 
among neighboring units is presented in Table 3. The 
highly significant (P < 0.001) regression coefficient a en- 
capsulates the relative inflation in the family variance 
component  due to 0, while the coefficients b and c mea- 
sure the influence of replications and the number of fam- 
ilies, respectively. For  every 0.1 increase of 0 in the multi- 
unit plot designs the family variance estimate goes up by 
17-28%.  Realistic values of 0 in field trials can be expect- 
ed to fall in the 0.0-0.3 range (Magnussen 1989 a, 1990). 
Hence, the potential inflation of the family variance may 
be as high as 84%~ All four multi-plot designs gave rise 
to statistically distinct rates of inflation (P < 0.001). 
Replications had a surprisingly weak influence on the 
bias caused by Q. A rather modest, albeit statistically 
significant, 0 .5-0.8% drop in the bias could be achieved 
for every added replication in the designs with five-tree or 
ten-tree row plots. Bias in trials with square plot designs 
could not be reduced by adding more replicates, and the 
results indicate that the bias may actually increase slight- 
ly (0.2-0.8%) with added replications. No two designs 
had the same effect of replications (P < 0.05). Changing 
the number of families tested had little effect on the family 
variance, but adding say 50 families to a multi-unit plot 
design would inflate the family variance component  by 
1-3%. 

Inflation rates of the family variance component  were 
independent of the heritability level in the experimental 
population (Table 3). Separate regressions for each of the 
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Fig. 3. Trends in heritability estimates with increasing autocorre- 
lation. True h 2= 0.15 

heri tabil i ty levels 0.15, 0.25, 0.35 and 0.55 in the 5 x 1 
designs gave results that  could safely be combined with- 
out  a significant loss of information (likelihood rat io test: 

Fobs(12,380 ) = 1.03, P(F> Fobs) > 0.25). 
An inflation of the family variance component  trans- 

lates into an inflation of the est imated heritabil i ty (Fig. 3). 
Even a modest  autocorre la t ion of 0.2 caused a positive 
bias of 3 0 - 3 6 %  in the est imated heritabil i ty when the 
true heritabil i ty was 0.15. Purely numerical  consider- 
ations would show that  the relative bias of heritabilities 
due to r would be less severe at higher levels of additive 
variance, despite the fact that  the relative inflation of the 
family variance would remain the same. Estimates of 
breeding values will be upward  biased by an amount  
equal to the square root  of the inflation factors of the 
family variances or roughly one-half  of the a-values in 
Table 3. 

Fami ly  mean repeatabil i t ies (Table 4) and the F-ra t ios  
constructed to test ~f2,m = 0 were, by and large, unaffected 
by 0 (changes less than 5%). This illustrates that  autocor-  
relat ion modifies the plot  mean-square  and the family 
mean-square  in equal proport ions .  

Reductions of positive bias in the est imated family 
variance component  due to 0 could be achieved by redo- 
ing the ANOVA, after having subtracted from the original 
observations (U~ik) the weighted residuals (from the first 
ANOVA pass) of neighboring units mult ipl ied by a re- 
gression slope b (see also Methods  section). Results ob- 
tained with seven different values of b are listed in Table 5 
along with the results of doing no ne ighborhood adjust- 
ment  (B0). Best overall  results in terms of min imum bias 
arose from letting the covariance slope factor b be equal 
to the weighted average (2 N = 0.5 2 + 0.5 2 2, see under  B5 
in Table 5) of Mead 's  coefficient (2) of inter-plant  interac- 
t ion (Mead 1967). Fami ly  variance components  derived 
from this procedure  were only 9 - 1 1 %  too high, a 
marked  drop  from the inflation of 17 -149% encountered 
in the absence of any adjustment  (see under B1 in 
Table 5). Bartlett 's  (1978) t ranslat ion of the autoregres-  
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Table 4. Effect of spatial autocorrelation on family mean repeat- 
ability 

Plot size h2am (SE) 

0 = 0 0 = 0.05 

t x 1 0.47 (0.04) 0.47 (0.04) 
2 x 2 0.35 (0.02) 0.35 (0.02) 
3 x 3 0.55 (0.02) 0.57 (0.02) 
5 x 1 0.40 (0.02) 0.42 (0.02) 

10 x 1 0.57 (0.02) 0.59 (0.02) 

Table 5. Family variances after adjustments of spatial autocorre- 
lation with various slopes (B0 B7) in the analysis of covariance. 
Table entries are family variances in percent of unadjusted family 
variance at 0 = 0 (reference level 100). Plot size = 5 x 1 

h2 0 B0 " B1 b B2 ~ B3 d B4 ~ B5 f B6 g B7 h 

0.35 0.1 117 113 114 112 110 107 I'05 68 
0.2 139 129 130 128 119 111 109 73 
0.3 168 146 143 138 122 111 111 79 
0.4 203 166 160 144 115 110 113 86 
0.5 249 184 174 138 95 105 115 94 

0.55 0.1 118 112 114 114 110 107 1135 68 
0.2 140 127 129 127 118 110 109 73 
0.3 168 144 143 137 121 111 111 79 
0.4 204 161 158 143 115 109 112 86 
0.5 249 177 172 137 94 104 114 94 

b = 0 (no adjustment) 
b b = 0N/8 (average neighborhood correlation) 
c b = 0ols/8 (residual correlation among first-order neighbors 

as determined from ANOVA) 
b = 0o~J[8' (1 - 0o~0] 

~ b = 0/[8. (1-0)] 
f b = 2 N (2 N = (42 + 422)/8) 
g b = 20/[8 .(1 + 02)1 
h b = 1/8 

sive model  (ARI) of residuals into a symmetric nearest 
neighbor regression model  (see under B6 in Table 5) 
should be preferred as an adjustment  slope when 
0 < 0 -< 0.2 because it then yields a slightly ( ~ 2 % )  supe- 
rior reduction in the bias of the family variance. Al though 
the use of simple estimates of 0 (either ~ols or the average 
correlat ion among first-order neighbors ON, see under B2 
and B3 in Table 5) gave impressive reductions in the bias, 
they were, nevertheless, quite inferior to the aforemen- 
t ioned alternatives. An i terat ion of the adjustment  proce- 
dure (using b=o or b=ON, see under B4 and B5 in 
Table 5) proved to be more efficient than the non-i terated 
adjustment.  Adjustments  based on the simple residual 
average of neighboring [Papadakis '  method,  see Pa- 
padakis  (1984) for details] units induced a strong negative 
bias ( 6 - 3 2 % ,  see under B7 in Table 5) in the est imated 
family variance components.  The full adjustment  (b = 1/8) 
is only acceptable at high 0 values ( >  0.4). 
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Reduction of bias was achieved without a great in- 
crease in the standard error of the adjusted estimates of 
family variance and heritability. NN-adjusted estimates 
had a relatively higher standard deviation than did unad- 
justed estimates. Averaged over all the simulations the 
coefficient of variation of family variance components 
increased from 24.9% to 29.2% due to the NN-adjust- 
ments. The corresponding figures for the narrow-sense 
individual heritability were 23.3 % and 31.4 %, respectively. 

Discussion 

Positive correlations among neighboring experimental 
units sharing common microsites must be expected as the 
norm in genetics field trials, rather than as the exception 
(Besag and Kempton 1986; Cliff and Ord 1981; Upton 
and Fingleton 1985). An exact causal formulation of this 
correlation process is not possible in genetic trials where 
observations at a single location is the outcome of com- 
plex genotype x environment interactions. In genetic 
trials the estimated genetic values are conditional on the 
environments (i.e., microsites) that the genotype has been 
exposed to and the reference population used in the test. 
A clear-cut separation into "genetic" and "environmen- 
tal" effects in trials with phenotypic correlation among 
neighboring units is, therefore, not possible. This problem 
is attenuated in trials with genetically heterogeneous ma- 
terial. The adopted simulation process confounded - in a 
complex way - the true genetic effects with the environ- 
mental effects in an attempt to create a "realistic" scenario 
that models "closely" the real world. A first-order autore- 
gressive process model was chosen because it reflects real- 
ity quite well when microsite differences are caused by: 
(1) dispersal from a few sources; (2) large favorable 
patches; or (3) a gradient (Cliff and Ord 1981). Empirical 
evidence support this type of "spatial process" (for 
example, Binns 1987; Cullis and Gleeson 1989; Besag 
and Kempton 1986; Magnussen 1990; Modjeska and 
Rawlings 1983; Smith 1938). Single-unit plot designs will, 
under these confounded circumstances, be the only type 
of design that will provide the analyst with uninflated 
estimates of genetic variances and gain (Libby and Cock- 
erham 1980; Loo-Dinkins et al. 1990). However, single- 
unit plot designs quickly become the worst in terms of 
inflating genetic variances and heritabilities (Magnussen 
1989b; Stern 1968) when neighboring units compete for 
resources, notably light. Different designs are therefore 
needed for short-term and long-term trials (Edwards 
1956). 

Simulation of field experiments appears to be the only 
tractable approach to quantify the influence of spatial 
autocorrelation on estimated family variance components 
(Stroup and Mulitze 1991; Wilkinson et al. 1983). The 
underlying ARI scheme chosen to generate phenotypic 

correlations is very simple (no trend, same correlation 
along two axes, only the immediate NN effects are needed 
in. the model, no differential effects of neighbors and spa- 
tial effects only expressed at the phenotypic level). Real- 
ized correlation patterns in field trials may indeed resem- 
ble those of an AR1 process (Magnussen 1990) even if no 
well-defined process exists per se. NN-correlations will 
typically fluctuate between areas within an experiment, 
and correlations will often be stronger in one direction 
than in another (Correll and Cellier 1987; Modjeska and 
Rawlings 1983). Regardless of the actual process that 
generates the positive spatial autocorrelation among 
neighboring units, the results will be an inflation of the 
genetic variance components in a way similar to the re- 
sults presented in this study. 

The genetic model entertained in the simulated trials 
contained only additive effects at the family level. Adding 
within-family genetic effects would make no overall dif- 
ference inasmuch as these effects remain non-estimable. 
Simulations done with a random within-family compo- 
nent gave virtually identical inflation rates for the family 
variance components and the heritability estimates. Non- 
additive genetic effects were not considered, but simple 
considerations of their estimation (Falconer 1981; Gallais 
1976; Hallauer and Miranda 1981; Wright 1982) suggest 
that they would be even more seriously biased by spatial 
autocorrelations than the additive effects. 

Family variance components obtained from multi- 
unit plot designs will, in most cases, need a downward 
adjustment before realistic estimates of the amount of 
additive genetic variance can be made. Most field trials 
can be expected to show an autocorrelation of 0.05-0.30 
between first-order neighbors (as estimated from uni- 
formity trials, Magnussen 1989 a), and the inflation of the 
initial estimate of the family variance could be as high as 
84%. Additional replications will not be an effective way 
to solve this problem. The simple Papadakis adjustment 
procedure proved to be quite effective given the right 
choice of slope in the covariance regression. Although the 
NN-adjustment leads to an increase (5-8%) in the rela- 
tive standard error of the genetic estimates, the reduction 
in bias outweighs this drawback. 

Papadakis' method from 1937 (see Papadakis 1984 
for details) is not only intuitively appealing but also easy 
to implement. Care must be given to the choice of slope 
in the NN-covariance adjustment. A full NN-adjustment 
(slope equal to one) as pioneered by Papadakis and 
Wright (1978) is only effective in the presence of a strong 
spatial autocorrelation (~o > 0.45); at common low levels 
of ~ (Q < 0.15) it may actually be worse than no adjust- 
ment. Earlier criticism of a lack of numerical stability 
raised against the iterated Papadakis method (Binns 1987; 
Correll and Anderson 1983; Wilkinson et al. :1983) is mit- 
igated by the results in this study. The fact that the final 
iterated slope was obtained analytically and not through 
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use of actual estimates explains this positive experience 
with the iterated procedure. There are several adjustment 
procedures in which the autoregressive scheme has been 
transformed into a simultaneous regressive scheme 
(Bartlett 1978; Besag 1974; Ord 1975). Bartlett (1978) and 
Magnussen (1989 a) have shown how to obtain the coeffi- 
cients of the simultaneous regressive schemes with a min- 
imum of added effort. Other NN-adjustment  methods 
may, of course, prove to be equally efficient, but a full 
scale comparison is beyond the scope of this study. Sever- 
al maximmn likelihood methods, however, would require 
excessive computer resources for designs of practical rel- 
evance unless plot means were used as the basic data for 
the analyses. NN-adjustments at the plot level are likely 
to be less efficient than NN-adjustment  of single observa- 
tions because a higher proport ion of plots will have a 
reduced set of nearest neighbors. NN-adjustment  at the 
individual level should also be more efficient in adjusting 
for highly irregular mosaics of microsites that do not 
coincide with the actual layout of plots. 

This study will hopefully help remove some of the 
lingering scepticism against NN-adjustment  procedures 
in applied analysis of field experiments. Reliance on in- 
flated estimates of genetic variance components creates 
unrealistic expectations with the prospect of inefficient 
investments of scarce resources. 
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